Transfer Function Optimization Based on a Combined Model of Visibility and Saliency

Shengzhou Luo and John Dingliana Contact: <u>luos@tcd.ie</u> | <u>John.Dingliana@scss.tcd.ie</u> GV2: Graphics Vision and Visualisation Group, School of Computer Science and Statistics, Trinity College Dublin (Ireland)

Introduction

- We addresses the challenge of obtaining clear visualizations of features of interest in volume visualization.
- We automatically optimize the conspicuity of features to match a simple-to-specify target distribution reducing the need for the user to tweak unintuitive visualization parameters.
- We take into account both visibility and saliency of features in the definition of conspicuity as required by the user.

Background: Visibility weighted saliency metric

- Visibility-weighted saliency (VWS) [1] simultaneously indicates the perceptual saliency and visibility of features in volume rendered images.
- VWS is defined based on two components:
 - I. The Saliency field [2] is essentially a difference of Gaussian in 3D indicating the center-surround effect in a local neighborhood of voxels with respect to appearance attributes such as brightness and saturation
 - **II.** The Visibility field is computed from the opacity contribution of voxels to the final rendered image, and indicates viewpoint-dependent occlusions of the voxels [3] [4].

VWS-based Optimization of Transfer Functions

(a) Nucleon data set; (b) Transfer function with 3 features with opacities set by the user in the ratio 0.1:0.3:0.6 (c) VWS graph indicates the red feature is prominent despite lower opacity; (d) After opacity towards relative visibility distribution of 0.1 : 0.3 : 0.6, the green feature is particularly emphasized; (e) The optimized transfer function. (f) VWS graph after optimization.

Approach

• We define conspicuity to describe the opacity of a feature combined with the degree to which it is occluded by other features, and enhanced this in order to support

We exploit the visibility-weighted saliency metric to automatically adjust the relative conspicuity of features based on a user's specification of their relative importance.

A gradient descent with an inexact line search strategy is employed for iterative optimization, minimizing the following Objective Function:

where W_i is the visibility weighted saliency and t_i is a the user-defined importance of feature *i*, and *n* is the number of features.

- visualization tasks.
- Users typically have a general idea of how conspicuous certain features should be for a given task and then accordingly adjust parameters such as opacity values in the transfer function.
- + However the relationship between the opacity of voxels and the conspicuity of features in the final image is not linear, necessitating a trial-and-error process with the user having only indirect control through a set of complex unintuitive parameters.
- To address this need, we propose an iterative approach that automatically refines the opacity transfer function to achieve any given conspicuity distribution specified by the user.
- We employ an improved model of visibility that takes into account issues of saliency as well as occlusion and transparency.

(a) VWS plot of the Vortex simulation after a single optimization based on the first timestep; (b) Dynamically optimized for each time step; (c) Rendering of timestep 80 with the single optimization; (d) Timestep 80 with dynamic optimization.

Main contributions

- A novel transfer function optimization approach using the visibility-weighted saliency metric
- Our automated technique optimizes the clarity of features in visualizations of 3D volume datasets.
- The approach achieve user-specified target distributions of feature conspicuity by adjusting the opacity transfer function iteratively.
- The automated approach is demonstrated to be useful in particular for optimizing the visualization of time-varying volume datasets.

Visualization, transfer function and VWS of Vortex: (a) feature dominates even though opacities are set to equal; (b) after optimization details in internal green and red features are more recognizable.

References

[1] S. Luo and J. Dingliana, "Visibility-Weighted Saliency for Volume Visualization," in Computer Graphics and Visual Computing (CGVC), London, UK, 2015.

[2] Y. Kim and A. Varshney, "Saliency-guided Enhancement for Volume Visualization," IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 5, pp. 925–932, Sep. 2006.

[3] G. Emsenhuber, "Visibility Histograms in Direct Volume Rendering," Master's Thesis, Institute of Computer Graphics and Algorithms, Vienna University of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, 2008.

[4] C. D. Correa and K.-L. Ma, "Visibility Histograms and Visibility-Driven Transfer Functions," IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 2, pp. 192–204, Feb. 2011.

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

This research has been conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number 13/IA/1895.

