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Abstract 
Interactive simulation is made possible in many applications by simplifying or culling the 
finer details that would make real-time performance impossible. This paper examines detail 
simplification in the specific problem of collision handling for rigid body animation. We 
present an automated method for calculating consistent collision response at different levels 
of detail. The mechanism works closely with a system which uses a pre-computed 
hierarchical volume model for collision detection. 

 

1. Introduction 

Despite the levels of computational power available 
today, even to the modestly funded home user, 
interactive physically based animation remains a 
challenge. The source of the problem lies in the fact that 
the physical world we are attempting to model is 
infinitely complex. Thus, no matter how precise our 
model, it will only be an approximation of the real 
world. This is not always disastrous as many 
simplifications in animation go unnoticed by the human 
viewer. This uncertainty could in fact be exploited to 
simplify less obvious parts of the scene in order to 
reduce computational complexity3,7,17. Time critical 
approaches trade accuracy for speed, simplifying where 
necessary, to meet the demands of real-time rates 
throughout the simulation.  

Collision handling is a particular area of physically 
based animation where there is great potential to save on 
computation time by optimising the speed-accuracy 
trade-off. Collision detection has long been a major 
bottleneck in physically based animation and it would be 
highly desirable to have a system capable of managing 

this difficult problem at different levels of detail. One 
such system uses the concept of an interruptible 
collision detection mechanism which “adapts its 
workload to fit a time budget”10. However, such a 
system is not complete unless the data returned by it can 
immediately be of use to a collision response 
mechanism, which evolves the state of colliding objects 
based on how they have collided. 

This paper describes a comprehensive approach to 
level of detail management in the collision-handling 
problem. We present a method in which the approximate 
data returned by a progressively refinable collision 
detection mechanism is interpreted and used by its sister 
process, the collision response mechanism. Section 2 
presents the background to this work. In section 3, we 
describe a mechanism which performs collision 
detection based on hierarchical sphere tree 
representations of objects. We focus on the selective 
interpretation of data by the collision response process 
in section 4. Section 5 discusses the details of our 
implementation and we conclude in section 6 with a 
discussion and plans for future work. 
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2. Background 

The problem of simplifying the real world model before 
it is stored and manipulated on a machine is not a new 
one, nor is it limited to the domain of physically based 
animation. However, it does have particular relevance in 
real-time applications, where the demand for 
consistently high frame rates frequently calls for further 
simplifications of the model.  

Simplifying the entire scene might be one way of 
ensuring real-time rates, but it is not always possible to 
predict, in advance, how the simulation complexity will 
evolve with time. Such an approach faces the risk of 
simplifying the entire simulation for the sake of a few 
rare snapshots of high complexity. What is required is a 
mechanism capable of dynamically managing the detail 
level of a scene, trading accuracy with speed, so that 
optimal use is always made of the time available for 
each frame. Thus can it be guaranteed that the demands 
of real-time animation will be met throughout the 
lifetime of the simulation without excessively sacrificing 
the detail levels.  

Many physically based animation systems achieve 
real-time rates by culling computations for parts of the 
scene based on visibility5. However we must take care, 
in simulation, not to neglect even the non-visible parts 
of the scene, for as the simulation evolves or the view 
changes, dependencies often arise between the objects in 
the visible and non-visible parts of the scene. 
Furthermore, culling is not an option in cases such as 
when the visible part of the scene alone is still too 
computationally complex. Simplification within the 
visible area itself is required, and a scheduling 
mechanism, which employs perceptual heuristics, may 
be used to determine which objects or events in the 
visible scene deserve more processing time4,15,17. Once 
the scene has been partitioned into areas of varying 
priority, there are various ways in which we can trade 
accuracy for speed. One approach is to use simulation 
models, of varying levels of complexity, to evolve 
different parts of the scene4,6. Even more desirable 
would be to have a single consistent mechanism capable 
of updating the scene at different levels of behavioural 
detail. In this paper, we discuss such a mechanism for 
dealing with the problem of collision handling. 

The process of collision handling, in most current 
approaches, can be broken down into several distinct 
phases. A broad phase collision test rapidly eliminates 
objects which are clearly not colliding. This is usually 
achieved using coarse bounding volume intersection 
tests9. The narrow phase of collision detection handles 
possible candidates that the broad phase is unable to 
eliminate. In most cases the narrow phase consists of 
polygonal intersection tests which are as accurate as the 
surface representation of the object will allow. Some 
approaches have an intermediate phase which employs 

progressive refinement of data to narrow down the areas 
of possible collision8,16. Once it has been conclusively 
determined that a collision has taken place, a contact 
modelling phase extracts the relevant details of the 
collision. This is required by the final mechanism 
responsible for updating the states of the colliding 
objects, based on the laws of dynamics.  

To ensure a completely time-critical system, we 
require that all processes of indeterminate complexity be 
packaged into the interruptible part of the system. Any 
calculations which have to be performed after that must 
take a constant or predictable time to complete. 
Alternatively, we can have several different mechanisms 
handling separate parts of the problem, each packaged in 
their own interruptible processes. Our time-critical 
approach to the collision-handling problem uses 
interruption in the progressively refinable narrow phase 
to obtain approximate contact data. This must be 
interpreted by the contact modelling process before the 
collision can be resolved. 

Up to now, contact modelling has been problematic, 
due to the inexact nature of even the most accurate of 
techniques available12. In interruptible systems, the 
problem is further exacerbated due to the reduced 
accuracy of results. A system which reduces 
computational complexity is ineffective if the resulting 
response is unbelievable. In an approach based on 
graceful degradation our first requirement is that the 
system delivers acceptably consistent results even with 
reduced input data from collision detection. Using 
perceptually based sorting it is possible to strategically 
simplify the scene and work towards the goal of 
plausible simulation15. Thus, we exploit uncertainty to 
deliver real time animation. 

3. Collision Detection 

We use a collision detection mechanism, based on the 
approach described by Hubbard, which checks for 
intersections between the nodes of a sphere tree data 
structure9,10. The key feature we wish to inherit from this 
approach is the hierarchical layout of the volume 
representation, which provides us with the basis for 
graceful degradation. We exploit the nature of the 
sphere-node, which provides us with a quick means of 
obtaining useful data for the collision response 
mechanism described later. Other useful advantages of 
this approach include an inbuilt method of handling 
collisions between concave objects, which other 
methods approach by using unions of convex objects; 
the sphere tree by its very nature is already a union of 
spheres.  

For collision detection, we follow Hubbard’s general 
approach, and extend it with our own mechanisms for 
scheduling, contact modelling and collision response. 
These issues constitute the main focus of this paper, but 
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it is impossible to discuss full collision handling without 
first explaining the features of the collision detection 
mechanism being used. This section gives such an 
outline, and details the features that are most relevant to 
our implementation of the full collision handler.  

Each object in the world is associated with its own 
sphere-tree, which is a spatial occupancy representation 
of the object’s volume based on sphere primitives (see 
Figure 1). The sphere primitives are useful because 
collision detection between nodes effectively amounts to 
a distance test between the centres of the relevant 
spheres.  

The difficult part of such an approach, as with all 
hierarchical representations, is updating the hierarchy to 
reflect its change of state. We must update the position 
of each node to reflect the object’s orientation before 
any intersection tests can be done. This can become 
computationally taxing as we go deeper down the 
hierarchy, but the workload is greatly reduced by 
updating only the relevant sub-trees i.e. the nodes for 
which the parent has been found to be intersecting.  

The collision detection mechanism is outlined in 
Figure 2. The process involves performing intersection 
tests for increasingly finer levels of sphere-tree detail.  A 

possible collision is flagged when an intersection is 
found between sphere nodes on two different objects. 
Nodes requiring further processing are marked in bold in 
Figure 2 (a), (b) and (c). If the intersecting nodes are not 
leaves on the sphere tree, then all of their children must 
in turn be checked for intersection. Only when we reach 
the leaf nodes can we return a conclusive result as to 
whether the objects are colliding (in which case, we 
have an instance of a true collision) or if, in fact, the 
objects are not colliding at all (Figure 2(d)). Each true 
collision must definitely be resolved by the response 
mechanism. A time critical approach to sphere-tree 
collision detection consists of a scheduling mechanism, 
which interrupts the detection process when it exhausts 
the time allocated to it (see section 5.1.). When the 
process is interrupted at some stage in the traversal of 
the sphere tree, all possible collisions must then be 
processed by the resolution mechanism as if they were 
true collisions. 

 One approach to collision detection uses the 
progressive traversal of the sphere tree as a middle phase 
and follows it up with a more detailed narrow phase 
consisting of polygonal intersection tests16. Sphere tree 
traversal in such an approach is used to localize the 
region to be checked later for polygon intersection. This 
not only requires more pre-processing time and data 
storage in determining the polygonal surface regions 
encompassed by each sphere, but increases the time 
spent by collision detection in the more intensive 
polygon intersection test. It also adds to the burden of 
collision response in having to deal with several special 
cases of intersections, depending on whether the 
intersection involves combinations of faces, edges or 
vertices.  

Our coarser intersection test will only yield a generic 
type of interference, that between two spheres. As we 
traverse deeper down our sphere tree hierarchy, this 
approximation becomes increasingly more accurate. The 
radii of the sphere-tree nodes become smaller and their 
volumes more closely approximate the true surface. 
Progressive refinement is introduced into our system at 
the sphere-tree traversal stage. Thus, it constitutes the 
main part of the narrow phase in our system. We 
compensate for the lack of polygonal detail by having 
deeper trees in our representation of the object than 
would be required of applications that depended wholly 
on narrow phase polygon testing.  

It must be remembered that our detection process is 
interrupted at some stage during the traversal of the 
sphere tree. To do further polygonal intersection tests 
after the collision detection has exceeded the time 
allocated to it, defeats the purpose of our entire 
approach, as we cannot predict how long these will take. 
Instead, polygon tests are reserved as the finest level of 
detail after the leaf nodes in the tree have been found to 
be intersecting. We must allow for the possibility that 

(a) Level0 (b) Level1 

(c) Level2 (d) Level3 

Figure 2 Collision Detection at different levels of
detail 

Figure 1: Sample Sphere Tree Hierarchy 
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collision detection will be interrupted before our system 
has had the opportunity to do accurate polygon testing 
and that we will be required to compute response based 
on whatever data that we have gathered in the coarser 
intersection tests of the intermediate phase. Many others 
have dealt with polygon level collision detection12. Our 
principle concern in this paper will be the collision 
handling at coarser levels of detail.  

One side effect of having only the generic sphere-node 
collision is that edge and face collisions are detected as 
multiple sphere collisions. One special case in a 
polygon-based approach might be detected as multiple 
instances of sphere intersections (see Figure 3). This 
increases the number of cases that collision response has 
to deal with and might seem to increase the workload of 
collision handling. However, we are simply trading 
multiple instances of a much simpler problem for fewer 
instances of a more difficult one. This is a necessary 
tradeoff in our chosen approach as it allows us to 
support the interruptible sphere-tree collision detection 
which we use in our implementation.  

4. Collision Response 

The primary goal of collision response is to deal with 
objects which the detection mechanism has identified as 
colliding14. The response may be something as simple as 
changing the colours of the colliding objects, destroying 
one or all of them, or moving them apart so they are no 
longer colliding after the collision event. More is 
required in physically based animation, as the collision 
response mechanism has to calculate a change of state 
for the colliding objects based on laws of dynamics. 

Solving the collision response problem can become 
a computationally intensive task if we take into account 
all the variables, such as elasticity, friction and energy, 

which contribute to the behaviour of colliding objects in 
a scene. There are countless mathematical laws in 
dynamics, which might be applicable to the problem of 
collision resolution. However, there is no general 
solution encompassing all these details that would be of 
use to real-time animation. Once again we must give up 
accuracy for speed, and make some simplifications to 
the model in order to provide a universally applicable 
solution for interactive animation. 

As explained in the previous section, our collision 
response mechanism has the added burden of dealing 
with approximated data, which must be selectively 
processed before it can be passed over to the part of the 
system that is responsible for the dynamics. In this paper 
we are chiefly concerned with the problem of using the 
refinable approximations returned by our collision 
detection system to obtain useful results for a real-time 
system. We will focus on a simple dynamics solver 
which deals with the problem of collision handling for 
rigid bodies1. We model all of our colliding entities as 
perfectly rigid. No kinetic energy is lost during 
collisions, and change of state is calculated based on 
instantaneous impulses2,11,13. We concentrate on the 
problem of contact forces, acting in directions normal to 
the surfaces of colliding objects, and do not handle the 
problem of friction forces during collisions. Mirtich 
showed how an impulse model can be applied to cases 
of resting and sliding contact as well as colliding 
contact11.  

4.1. The Dynamics Model 
Working with an impulse model allows us to deal with 
the instantaneous values of the colliding objects’ state 
variables. As we are dealing with approximations which 
change in their degree of accuracy from frame to frame 
it is desirable that we are able to deal with the 
instantaneous values of the relevant parameters.  

For rigid body collisions, a scalar j representing 
the magnitude of the impulse along the collision 
normal,n

�
, is calculated using the following equation2: 
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The variables are 

∈ : the coefficient of restitution which will be 1 for 
perfectly elastic collisions 

mi: mass of body i 

Ii: the inertial tensor matrix of body i  

ri: the displacement vector representing the 
displacement of the collision point p from the 

Figure 3: Multiple Sphere Intersections 

(b) An increasing number of
sphere collisions will be
detected at each level of detail 

(a) This might be considered a
single collision between two
faces 
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respective centres of mass xi of the colliding objects 
as follows: 

ii xpr −=                            (2) 

vC : the collision velocity which represents the 
relative velocities of the points of collision along the 
collision normal. This is calculated from the linear 

velocity vi, rotational velocity i , and collision 

point displacement ri of the colliding objects a and b 
as follows: 

( ) ( )( ))r(v)r(vnv bbbaaaC ×+−×+•= �    

(3) 

4.2. Contact Modelling based on 
Approximate Data 

We discussed in Section 3 how the narrow phase of our 
collision detection system selectively traverses the 
sphere tree to localize the region of interference between 
two objects.  In the previous section, we identified the 
variables that we would require even in a minimal 
impulse based solution. Apart from the state variables of 
the individual objects, which should be directly 
available through their associated data structures, we 
need to know for each collision, a collision point and a 
vector representing the direction in which the required 
impulse is to be applied. Further processing is thus 
required before we have data of a form with which the 
dynamics solver is able to deal. 

Exploiting once again the simple nature of our sphere-
tree nodes, a quick approximation of the collision vector 
is the common normal to the two spheres which have 
been flagged as colliding. We can obtain this from the 
line that runs across their two centres.  
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An approximation of a collision point is where this line 
crosses the plane of intersection between the two 

spheres (see Figure 4). This plane subdivides the line 
segment between the two centres into lengths, 
proportional to their respective radii, and the point of 
intersection is determined by a simple proportionality 
calculation. 
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This result can easily be calculated, even in the case 
where we are resolving intersections between spheres of 
different levels in the respective hierarchies of the two 
objects. 

Now that we have decided on a collision point and a 
vector along which to apply the collision impulse, we 
can apply the equations of section 4.1 to generate the 
appropriate response. It should be noted that so far we 
are only dealing with the objects at a stage after they 
have interpenetrated. Traditional collision detection 
systems would require, at this stage, that we backtrack in 
simulation time to determine the instant in time when 
the actual collision took place. This is required to obtain 
data for calculating an accurate response, as well as to 
enforce the non-interpenetration constraint. In the coarse 
phase, we will always be dealing with approximations of 
object volume. Thus, when an intersection occurs 
between sphere nodes of an object, we cannot imply that 
the actual objects themselves are even touching (see 
Figure 5). It would be highly infeasible to perform 
backtracking at every level of detail, as we can be 
certain that a case of interpenetration at one coarse level 
will frequently resolve to non-interpenetration at a finer 
resolution.  

 

At present we leave backtracking, as we do polygonal 
intersection tests, as a possible final level of detail to be 
applied to the highest-priority collisions only.  

n
�

n
�−

O1 

O2 

R2 

R1 

C 

Figure 4: Determining collision point and normal 

(a) intersection at time t0 

Figure 5: Inappropriate backtracking 

(b) after backtracking 
      to “collision time” 
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4.3. Processing Collision Data 

The final phase in collision handling is to call the 
dynamics solver mechanism which applies and resolves 
all the impulses to generate a mathematically consistent 
change of state in all colliding objects in the scene. At 
this stage, the contact modelling mechanism has 
provided us with all the variables we require, so 
computing and applying the required impulses for each 
instance of a collision is a fairly straightforward process 
of applying the variables to the equations of section 4.1.  

All that is required now is to go through the 
dynamically generated collision table and to retrieve the 
relevant data. Several options present themselves as to 
how collision processing is to be organized. One option 
is to store collision data in a hierarchical tree structure 
similar to, but separate from, the way we have organized 
our volume data. A time-critical response resolution 
mechanism does a prioritised traversal of the collision 
tree applying impulses at increasing levels of detail. In 
such an approach, we have the option of performing the 
contact modelling within the schedule of either the 
response or the detection mechanism. This approach 
conforms to the requirements we laid out for a fully 
time-critical system with all processes of indeterminate 
complexity packaged in their own interruptible 
mechanisms.  

However, it is often the case that data used in the 
collision detection phase is immediately of use to the 
response calculations. The two processes have many 
common requirements, such as the distance calculations 
and the data they return. Furthermore, in a system that 
schedules collision handling based on the visibility of 
the different parts of the scene, it is likely that we will 
wish to follow the same prioritisation scheme for both 
processes of collision handling. It would therefore be 
advantageous to have a single interleaved collision 
handling mechanism, with both the processes of 
detection and response working together and sharing 
data within the same schedule. 

This is the approach that we have favoured in our 
implementation, which we discuss in section 5. In such a 
system, there is no need to store the various different 
levels of contact detail. We are concerned only with the 
level of detail that is currently being processed. Data 
gathering continues to run with the interruptible 
detection part of the mechanism. When this is 
interrupted, the impulse calculations are immediately 
applied with collision data at the highest available level 
of detail.  

5. Implementation 

In this section we describe an implementation of the 
ideas presented in earlier sections and illustrate some of 
the results we have obtained. 

5.1. The Application 

A summary of the system design is shown in Figure 6. A 
world class encapsulates all the simulation concerns of 
the application, including collision handling and state 
propagation when there are no objects colliding. User 
interaction and all other interfaces are maintained by the 
application class, which contains the world.  

The key data structures in the application are the object 
class, which stores the state of each body in our system; 
the sphere tree class; and a dynamically generated 
collision list, through which the collision detection and 
response mechanisms communicate data. 

The Object class needs to contain at least the state 
variables and constants shown in Figure 7. 

A sphere-tree associated with each object is laid out in a 
hierarchical manner as already discussed in Section 2. 
Two instances of a sphere tree are stored: the first 
(body_S) holds the untransformed body-space 
coordinates of the sphere nodes and is constant 
throughout the simulation, while the second (world_S) 
represents the object in world coordinates after it has 
been updated with respect to the orientation and position 

  Object 

Scalar mass 
Vector position, 
 linear_velocity, 
 rotational_velocity 
Matrix orientation, 
 bodyspace_Inertial_tensor, 
 worldspace_Inertial_tensor; 
Sphere Tree world_S, 

body_S; 

Figure 7: The Generic Object Class 

Figure 6: Main control and data structures 
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World 
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Collision List 
Simulation_Update() 
Collision Detection() 
Collision Response() 
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  World 
  Display() 

 Scheduler 
  time_available 
   Prioritise() 

  Classes   
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underline 
boldface 
plaintext() 

KEY 
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of the body. Only the relevant nodes, i.e. the ones being 
processed by collision detection, are updated.  

The dynamically generated collision list stores 
collision data in the form of collision entries.  Each 
collision entry models the contact between a pair of 
objects in the scene and stores more detailed data in the 
form of a list of sphere collision data structures (Figure 
8). The sphere collisions represent the specific 
intersections between nodes on the pair of colliding 
objects. This is the data that is required by the collision 
response mechanism. 

The world class carries out collision detection after 
every update of the simulation scene, generating the 
collision list of intersections at various levels of detail. 
Potential candidates for collision, in other words those 
objects not eliminated by the broad phase, are placed in 
a list of collisions for further processing. Starting at the 
root nodes we traverse the sphere trees of the objects 
checking for intersection. When an intersection is found, 
the contact variables are calculated and an entry is stored 
in the sphere collision list of the respective collision 
object. Whenever we finish processing a complete level 
of a sphere tree, we have the required data to refine the 
resulting response by one level of accuracy.  

After solving the equations of section 4.1 to 
determine the impulse that needs to be applied at each 
intersecting node, a final change of state for each object 
is determined by resolving multiple impulses to 
determine their net effect on the object. Two things are 
worth noting here: 

(i) the process of calculating a single impulse always 
involves a constant amount of processing time. 

(ii) the time spent on collision response is directly 
dependent on the number of intersections being 
processed. 

The number of intersecting nodes is likely to be different 
for each collision and for each level of detail so 
processing time for impulse resolution varies for 
different collisions. However it is at the contact-
modelling phase that we decide on the number of nodes 
that will be processed so, given the amount of 
processing time for a single impulse computation, it is 
possible to forecast the amount of time that will be spent 
on the process of calculating collision response. A 

scheduling mechanism can then make use of this 
information to fulfil the requirements of a time critical 
system. 

The time-critical scheduler for the full application 
monitors the time spent in generating each frame of the 
animation. Taking into account the time required for 
other processes, such as rendering, it needs to decide 
how much time will be made available for the combined 
processes of collision detection, contact modelling and 
collision response. The scheduler initially allocates a 
time quota at each frame for all collision handling 
processes and decides on the order of collision 
processing. At each stage in the collision 
handling/contact modelling phase it not only checks if 
the quota has been exceeded but also reserves the time 
that will later be spent on the response computations. 
When it has determined that the detection process has 
exhausted its allocated time quota, it interrupts the 
collision detection process and passes control to the 
collision response mechanism. The response mechanism 
in turn updates the scene based on the most accurate 
level of detail available (in other words the most 
recently completed sphere collision lists for each 
collision). 

5.2. Results 

Figures 9(a) – (c) show sequences of frames from an 
animation of a single collision interrupted at three levels 
of sphere tree detail. We look at the two dimensional 
projection of a very simple collision case for ease of 
visualization. The first two frames in each strip show, 
respectively, the starting positions of the two objects and 
the instant in which an intersection between sphere 
nodes is detected. After the collision has been processed 
the three different animation levels of detail show 
increasing accuracy as can be seen from the trajectories 
and the rotational velocities of the two objects. 

This approach allows us to manage collision 
handling in massively populated scenes. The only 
requirement is that we have time to do collision 
detection and response at the coarsest level of detail for 
all objects in the scene. 

6. Conclusion and Comments 

In this paper we introduced an approach to what we call 
level of detail collision handling, and described an 
application which implemented this idea. Previous 
approaches have dealt with refinable detection but have 
failed to describe how imprecise data returned by a 
coarse level process might be used in anything but the 
simplest response. We go one step further in this 
particular direction and propose a method in which we 
actually use the approximate data returned by an 
interruptible collision detection to achieve useful results 

Figure 8: The collision data structures 

 Collision 

integer 
  object1_index, 
  object2_index 
spherecollision_list 

Sphere_collision 

 Vector 
Normal 
Position 
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for interactive animation.  By controlling the level of 
detail of individual interactions in a complex scene, it 
becomes possible to reduce computational workload and 
meet the demand for real-time frame rates. The harmful 
impacts of simplification on the believability of the 
animation can be reduced by careful management of 
levels of detail. 

Evaluating the effectiveness of our new collision 
response methods is a difficult task. Hubbard9,10 showed 
that, using interruption, almost constant-time collision 
detection was possible. In previous work15, a metric was 
presented for evaluating the geometric and perceived 
collision inaccuracy present in a frame of an animation 
where interruptible collision detection was used. This 
metric was based on a set of psychophysical 
experiments which determined subjects’ sensitivity to 
inappropriate collisions, such as objects repulsing each 
other at a distance. It was shown that using a scheduling 
mechanism based on perceptual heuristics, perceived 
inaccuracy, as measured by this metric, was significantly 
reduced. However, the effect of unrealistic response on 
this reaction was not considered. A fully comprehensive 
evaluation of our techniques would also involve such 
experiments, which deserve a study in their own right, 
and will reveal insights into how the full process of 
collision handling should be prioritised by the scheduler.  
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(a) Level 1 Collisions (b) Level 2 Collisions (c) Level 3 Collisions  
Figure 9: Animation strips: Shown above are selected frames from collision simulations interrupted at three different 
levels of sphere-tree detail. Note the varying gap at “collision time” and the differences in the calculated final linear and 
rotational velocities. 

 

 


