
EUROGRAPHICS 2000 / M.Gross and F.R.A. Hopgood
(Guest Editors)

Volume 19 (2000), Number 3

© The Eurographics Association and Blackwell Publishers 2000. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4, 1JF, UK and 350 Main Street Malden, MA
02148, USA.

Graceful Degradation of Collision Handling in Physically

Based Animation

John Dingliana Carol O’Sullivan

Image Synthesis Group, Computer Science Department,
Trinity College Dublin, Ireland.

http://isg.cs.tcd.ie
John.Dingliana | Carol.OSullivan @ cs.tcd.ie

Abstract
Interactive simulation is made possible in many applications by simplifying or culling the
finer details that would make real-time performance impossible. This paper examines detail
simplification in the specific problem of collision handling for rigid body animation. We
present an automated method for calculating consistent collision response at different levels
of detail. The mechanism works closely with a system which uses a pre-computed
hierarchical volume model for collision detection.

1. Introduction

Despite the levels of computational power available
today, even to the modestly funded home user,
interactive physically based animation remains a
challenge. The source of the problem lies in the fact that
the physical world we are attempting to model is
infinitely complex. Thus, no matter how precise our
model, it will only be an approximation of the real
world. This is not always disastrous as many
simplifications in animation go unnoticed by the human
viewer. This uncertainty could in fact be exploited to
simplify less obvious parts of the scene in order to
reduce computational complexity3,7,17. Time critical
approaches trade accuracy for speed, simplifying where
necessary, to meet the demands of real-time rates
throughout the simulation.

Collision handling is a particular area of physically
based animation where there is great potential to save on
computation time by optimising the speed-accuracy
trade-off. Collision detection has long been a major
bottleneck in physically based animation and it would be
highly desirable to have a system capable of managing

this difficult problem at different levels of detail. One
such system uses the concept of an interruptible
collision detection mechanism which “adapts its
workload to fit a time budget”10. However, such a
system is not complete unless the data returned by it can
immediately be of use to a collision response
mechanism, which evolves the state of colliding objects
based on how they have collided.

This paper describes a comprehensive approach to
level of detail management in the collision-handling
problem. We present a method in which the approximate
data returned by a progressively refinable collision
detection mechanism is interpreted and used by its sister
process, the collision response mechanism. Section 2
presents the background to this work. In section 3, we
describe a mechanism which performs collision
detection based on hierarchical sphere tree
representations of objects. We focus on the selective
interpretation of data by the collision response process
in section 4. Section 5 discusses the details of our
implementation and we conclude in section 6 with a
discussion and plans for future work.

Dingliana and O’Sullivan / Graceful Degradation of Collision Handling

© The Eurographics Association and Blackwell Publishers 2000.

2. Background

The problem of simplifying the real world model before
it is stored and manipulated on a machine is not a new
one, nor is it limited to the domain of physically based
animation. However, it does have particular relevance in
real-time applications, where the demand for
consistently high frame rates frequently calls for further
simplifications of the model.

Simplifying the entire scene might be one way of
ensuring real-time rates, but it is not always possible to
predict, in advance, how the simulation complexity will
evolve with time. Such an approach faces the risk of
simplifying the entire simulation for the sake of a few
rare snapshots of high complexity. What is required is a
mechanism capable of dynamically managing the detail
level of a scene, trading accuracy with speed, so that
optimal use is always made of the time available for
each frame. Thus can it be guaranteed that the demands
of real-time animation will be met throughout the
lifetime of the simulation without excessively sacrificing
the detail levels.

Many physically based animation systems achieve
real-time rates by culling computations for parts of the
scene based on visibility5. However we must take care,
in simulation, not to neglect even the non-visible parts
of the scene, for as the simulation evolves or the view
changes, dependencies often arise between the objects in
the visible and non-visible parts of the scene.
Furthermore, culling is not an option in cases such as
when the visible part of the scene alone is still too
computationally complex. Simplification within the
visible area itself is required, and a scheduling
mechanism, which employs perceptual heuristics, may
be used to determine which objects or events in the
visible scene deserve more processing time4,15,17. Once
the scene has been partitioned into areas of varying
priority, there are various ways in which we can trade
accuracy for speed. One approach is to use simulation
models, of varying levels of complexity, to evolve
different parts of the scene4,6. Even more desirable
would be to have a single consistent mechanism capable
of updating the scene at different levels of behavioural
detail. In this paper, we discuss such a mechanism for
dealing with the problem of collision handling.

The process of collision handling, in most current
approaches, can be broken down into several distinct
phases. A broad phase collision test rapidly eliminates
objects which are clearly not colliding. This is usually
achieved using coarse bounding volume intersection
tests9. The narrow phase of collision detection handles
possible candidates that the broad phase is unable to
eliminate. In most cases the narrow phase consists of
polygonal intersection tests which are as accurate as the
surface representation of the object will allow. Some
approaches have an intermediate phase which employs

progressive refinement of data to narrow down the areas
of possible collision8,16. Once it has been conclusively
determined that a collision has taken place, a contact
modelling phase extracts the relevant details of the
collision. This is required by the final mechanism
responsible for updating the states of the colliding
objects, based on the laws of dynamics.

To ensure a completely time-critical system, we
require that all processes of indeterminate complexity be
packaged into the interruptible part of the system. Any
calculations which have to be performed after that must
take a constant or predictable time to complete.
Alternatively, we can have several different mechanisms
handling separate parts of the problem, each packaged in
their own interruptible processes. Our time-critical
approach to the collision-handling problem uses
interruption in the progressively refinable narrow phase
to obtain approximate contact data. This must be
interpreted by the contact modelling process before the
collision can be resolved.

Up to now, contact modelling has been problematic,
due to the inexact nature of even the most accurate of
techniques available12. In interruptible systems, the
problem is further exacerbated due to the reduced
accuracy of results. A system which reduces
computational complexity is ineffective if the resulting
response is unbelievable. In an approach based on
graceful degradation our first requirement is that the
system delivers acceptably consistent results even with
reduced input data from collision detection. Using
perceptually based sorting it is possible to strategically
simplify the scene and work towards the goal of
plausible simulation15. Thus, we exploit uncertainty to
deliver real time animation.

3. Collision Detection

We use a collision detection mechanism, based on the
approach described by Hubbard, which checks for
intersections between the nodes of a sphere tree data
structure9,10. The key feature we wish to inherit from this
approach is the hierarchical layout of the volume
representation, which provides us with the basis for
graceful degradation. We exploit the nature of the
sphere-node, which provides us with a quick means of
obtaining useful data for the collision response
mechanism described later. Other useful advantages of
this approach include an inbuilt method of handling
collisions between concave objects, which other
methods approach by using unions of convex objects;
the sphere tree by its very nature is already a union of
spheres.

For collision detection, we follow Hubbard’s general
approach, and extend it with our own mechanisms for
scheduling, contact modelling and collision response.
These issues constitute the main focus of this paper, but

Dingliana and O’Sullivan / Graceful Degradation of Collision Handling

© The Eurographics Association and Blackwell Publishers 2000.

it is impossible to discuss full collision handling without
first explaining the features of the collision detection
mechanism being used. This section gives such an
outline, and details the features that are most relevant to
our implementation of the full collision handler.

Each object in the world is associated with its own
sphere-tree, which is a spatial occupancy representation
of the object’s volume based on sphere primitives (see
Figure 1). The sphere primitives are useful because
collision detection between nodes effectively amounts to
a distance test between the centres of the relevant
spheres.

The difficult part of such an approach, as with all
hierarchical representations, is updating the hierarchy to
reflect its change of state. We must update the position
of each node to reflect the object’s orientation before
any intersection tests can be done. This can become
computationally taxing as we go deeper down the
hierarchy, but the workload is greatly reduced by
updating only the relevant sub-trees i.e. the nodes for
which the parent has been found to be intersecting.

The collision detection mechanism is outlined in
Figure 2. The process involves performing intersection
tests for increasingly finer levels of sphere-tree detail. A

possible collision is flagged when an intersection is
found between sphere nodes on two different objects.
Nodes requiring further processing are marked in bold in
Figure 2 (a), (b) and (c). If the intersecting nodes are not
leaves on the sphere tree, then all of their children must
in turn be checked for intersection. Only when we reach
the leaf nodes can we return a conclusive result as to
whether the objects are colliding (in which case, we
have an instance of a true collision) or if, in fact, the
objects are not colliding at all (Figure 2(d)). Each true
collision must definitely be resolved by the response
mechanism. A time critical approach to sphere-tree
collision detection consists of a scheduling mechanism,
which interrupts the detection process when it exhausts
the time allocated to it (see section 5.1.). When the
process is interrupted at some stage in the traversal of
the sphere tree, all possible collisions must then be
processed by the resolution mechanism as if they were
true collisions.

 One approach to collision detection uses the
progressive traversal of the sphere tree as a middle phase
and follows it up with a more detailed narrow phase
consisting of polygonal intersection tests16. Sphere tree
traversal in such an approach is used to localize the
region to be checked later for polygon intersection. This
not only requires more pre-processing time and data
storage in determining the polygonal surface regions
encompassed by each sphere, but increases the time
spent by collision detection in the more intensive
polygon intersection test. It also adds to the burden of
collision response in having to deal with several special
cases of intersections, depending on whether the
intersection involves combinations of faces, edges or
vertices.

Our coarser intersection test will only yield a generic
type of interference, that between two spheres. As we
traverse deeper down our sphere tree hierarchy, this
approximation becomes increasingly more accurate. The
radii of the sphere-tree nodes become smaller and their
volumes more closely approximate the true surface.
Progressive refinement is introduced into our system at
the sphere-tree traversal stage. Thus, it constitutes the
main part of the narrow phase in our system. We
compensate for the lack of polygonal detail by having
deeper trees in our representation of the object than
would be required of applications that depended wholly
on narrow phase polygon testing.

It must be remembered that our detection process is
interrupted at some stage during the traversal of the
sphere tree. To do further polygonal intersection tests
after the collision detection has exceeded the time
allocated to it, defeats the purpose of our entire
approach, as we cannot predict how long these will take.
Instead, polygon tests are reserved as the finest level of
detail after the leaf nodes in the tree have been found to
be intersecting. We must allow for the possibility that

(a) Level0 (b) Level1

(c) Level2 (d) Level3

Figure 2 Collision Detection at different levels of
detail

Figure 1: Sample Sphere Tree Hierarchy

Dingliana and O’Sullivan / Graceful Degradation of Collision Handling

© The Eurographics Association and Blackwell Publishers 2000.

collision detection will be interrupted before our system
has had the opportunity to do accurate polygon testing
and that we will be required to compute response based
on whatever data that we have gathered in the coarser
intersection tests of the intermediate phase. Many others
have dealt with polygon level collision detection12. Our
principle concern in this paper will be the collision
handling at coarser levels of detail.

One side effect of having only the generic sphere-node
collision is that edge and face collisions are detected as
multiple sphere collisions. One special case in a
polygon-based approach might be detected as multiple
instances of sphere intersections (see Figure 3). This
increases the number of cases that collision response has
to deal with and might seem to increase the workload of
collision handling. However, we are simply trading
multiple instances of a much simpler problem for fewer
instances of a more difficult one. This is a necessary
tradeoff in our chosen approach as it allows us to
support the interruptible sphere-tree collision detection
which we use in our implementation.

4. Collision Response

The primary goal of collision response is to deal with
objects which the detection mechanism has identified as
colliding14. The response may be something as simple as
changing the colours of the colliding objects, destroying
one or all of them, or moving them apart so they are no
longer colliding after the collision event. More is
required in physically based animation, as the collision
response mechanism has to calculate a change of state
for the colliding objects based on laws of dynamics.

Solving the collision response problem can become
a computationally intensive task if we take into account
all the variables, such as elasticity, friction and energy,

which contribute to the behaviour of colliding objects in
a scene. There are countless mathematical laws in
dynamics, which might be applicable to the problem of
collision resolution. However, there is no general
solution encompassing all these details that would be of
use to real-time animation. Once again we must give up
accuracy for speed, and make some simplifications to
the model in order to provide a universally applicable
solution for interactive animation.

As explained in the previous section, our collision
response mechanism has the added burden of dealing
with approximated data, which must be selectively
processed before it can be passed over to the part of the
system that is responsible for the dynamics. In this paper
we are chiefly concerned with the problem of using the
refinable approximations returned by our collision
detection system to obtain useful results for a real-time
system. We will focus on a simple dynamics solver
which deals with the problem of collision handling for
rigid bodies1. We model all of our colliding entities as
perfectly rigid. No kinetic energy is lost during
collisions, and change of state is calculated based on
instantaneous impulses2,11,13. We concentrate on the
problem of contact forces, acting in directions normal to
the surfaces of colliding objects, and do not handle the
problem of friction forces during collisions. Mirtich
showed how an impulse model can be applied to cases
of resting and sliding contact as well as colliding
contact11.

4.1. The Dynamics Model
Working with an impulse model allows us to deal with
the instantaneous values of the colliding objects’ state
variables. As we are dealing with approximations which
change in their degree of accuracy from frame to frame
it is desirable that we are able to deal with the
instantaneous values of the relevant parameters.

For rigid body collisions, a scalar j representing
the magnitude of the impulse along the collision
normal,n

�
, is calculated using the following equation2:

() () bbbaaa
ba

C

mm
rnrInrnrIn

v

××•+××•++

∈+−
−−

=
)()(

11
)1(

j
11 ����

 (1)

The variables are

∈ : the coefficient of restitution which will be 1 for
perfectly elastic collisions

mi: mass of body i

Ii: the inertial tensor matrix of body i

ri: the displacement vector representing the
displacement of the collision point p from the

Figure 3: Multiple Sphere Intersections

(b) An increasing number of
sphere collisions will be
detected at each level of detail

(a) This might be considered a
single collision between two
faces

Dingliana and O’Sullivan / Graceful Degradation of Collision Handling

© The Eurographics Association and Blackwell Publishers 2000.

respective centres of mass xi of the colliding objects
as follows:

ii xpr −= (2)

vC : the collision velocity which represents the
relative velocities of the points of collision along the
collision normal. This is calculated from the linear

velocity vi, rotational velocity i , and collision

point displacement ri of the colliding objects a and b
as follows:

() ()())r(v)r(vnv bbbaaaC ×+−×+•= �

(3)

4.2. Contact Modelling based on
Approximate Data

We discussed in Section 3 how the narrow phase of our
collision detection system selectively traverses the
sphere tree to localize the region of interference between
two objects. In the previous section, we identified the
variables that we would require even in a minimal
impulse based solution. Apart from the state variables of
the individual objects, which should be directly
available through their associated data structures, we
need to know for each collision, a collision point and a
vector representing the direction in which the required
impulse is to be applied. Further processing is thus
required before we have data of a form with which the
dynamics solver is able to deal.

Exploiting once again the simple nature of our sphere-
tree nodes, a quick approximation of the collision vector
is the common normal to the two spheres which have
been flagged as colliding. We can obtain this from the
line that runs across their two centres.

12

12

oo

oo
n

−

−
=� (4)

An approximation of a collision point is where this line
crosses the plane of intersection between the two

spheres (see Figure 4). This plane subdivides the line
segment between the two centres into lengths,
proportional to their respective radii, and the point of
intersection is determined by a simple proportionality
calculation.

2

1

2

1

R

R
=

−

−

oc

oc
 (5)

This result can easily be calculated, even in the case
where we are resolving intersections between spheres of
different levels in the respective hierarchies of the two
objects.

Now that we have decided on a collision point and a
vector along which to apply the collision impulse, we
can apply the equations of section 4.1 to generate the
appropriate response. It should be noted that so far we
are only dealing with the objects at a stage after they
have interpenetrated. Traditional collision detection
systems would require, at this stage, that we backtrack in
simulation time to determine the instant in time when
the actual collision took place. This is required to obtain
data for calculating an accurate response, as well as to
enforce the non-interpenetration constraint. In the coarse
phase, we will always be dealing with approximations of
object volume. Thus, when an intersection occurs
between sphere nodes of an object, we cannot imply that
the actual objects themselves are even touching (see
Figure 5). It would be highly infeasible to perform
backtracking at every level of detail, as we can be
certain that a case of interpenetration at one coarse level
will frequently resolve to non-interpenetration at a finer
resolution.

At present we leave backtracking, as we do polygonal
intersection tests, as a possible final level of detail to be
applied to the highest-priority collisions only.

n
�

n
�−

O1

O2

R2

R1

C

Figure 4: Determining collision point and normal

(a) intersection at time t0

Figure 5: Inappropriate backtracking

(b) after backtracking
 to “collision time”

Dingliana and O’Sullivan / Graceful Degradation of Collision Handling

© The Eurographics Association and Blackwell Publishers 2000.

4.3. Processing Collision Data

The final phase in collision handling is to call the
dynamics solver mechanism which applies and resolves
all the impulses to generate a mathematically consistent
change of state in all colliding objects in the scene. At
this stage, the contact modelling mechanism has
provided us with all the variables we require, so
computing and applying the required impulses for each
instance of a collision is a fairly straightforward process
of applying the variables to the equations of section 4.1.

All that is required now is to go through the
dynamically generated collision table and to retrieve the
relevant data. Several options present themselves as to
how collision processing is to be organized. One option
is to store collision data in a hierarchical tree structure
similar to, but separate from, the way we have organized
our volume data. A time-critical response resolution
mechanism does a prioritised traversal of the collision
tree applying impulses at increasing levels of detail. In
such an approach, we have the option of performing the
contact modelling within the schedule of either the
response or the detection mechanism. This approach
conforms to the requirements we laid out for a fully
time-critical system with all processes of indeterminate
complexity packaged in their own interruptible
mechanisms.

However, it is often the case that data used in the
collision detection phase is immediately of use to the
response calculations. The two processes have many
common requirements, such as the distance calculations
and the data they return. Furthermore, in a system that
schedules collision handling based on the visibility of
the different parts of the scene, it is likely that we will
wish to follow the same prioritisation scheme for both
processes of collision handling. It would therefore be
advantageous to have a single interleaved collision
handling mechanism, with both the processes of
detection and response working together and sharing
data within the same schedule.

This is the approach that we have favoured in our
implementation, which we discuss in section 5. In such a
system, there is no need to store the various different
levels of contact detail. We are concerned only with the
level of detail that is currently being processed. Data
gathering continues to run with the interruptible
detection part of the mechanism. When this is
interrupted, the impulse calculations are immediately
applied with collision data at the highest available level
of detail.

5. Implementation

In this section we describe an implementation of the
ideas presented in earlier sections and illustrate some of
the results we have obtained.

5.1. The Application

A summary of the system design is shown in Figure 6. A
world class encapsulates all the simulation concerns of
the application, including collision handling and state
propagation when there are no objects colliding. User
interaction and all other interfaces are maintained by the
application class, which contains the world.

The key data structures in the application are the object
class, which stores the state of each body in our system;
the sphere tree class; and a dynamically generated
collision list, through which the collision detection and
response mechanisms communicate data.

The Object class needs to contain at least the state
variables and constants shown in Figure 7.

A sphere-tree associated with each object is laid out in a
hierarchical manner as already discussed in Section 2.
Two instances of a sphere tree are stored: the first
(body_S) holds the untransformed body-space
coordinates of the sphere nodes and is constant
throughout the simulation, while the second (world_S)
represents the object in world coordinates after it has
been updated with respect to the orientation and position

 Object

Scalar mass
Vector position,
 linear_velocity,
 rotational_velocity
Matrix orientation,
 bodyspace_Inertial_tensor,
 worldspace_Inertial_tensor;
Sphere Tree world_S,

body_S;

Figure 7: The Generic Object Class

Figure 6: Main control and data structures

Object
Sphere Tree

Collision

World
Object List
Collision List
Simulation_Update()
Collision Detection()
Collision Response()

 Application
 World
 Display()

 Scheduler
 time_available
 Prioritise()

 Classes
 Objects
 Operations
 One-to-many
 relationships

underline
boldface
plaintext()

KEY

Dingliana and O’Sullivan / Graceful Degradation of Collision Handling

© The Eurographics Association and Blackwell Publishers 2000.

of the body. Only the relevant nodes, i.e. the ones being
processed by collision detection, are updated.

The dynamically generated collision list stores
collision data in the form of collision entries. Each
collision entry models the contact between a pair of
objects in the scene and stores more detailed data in the
form of a list of sphere collision data structures (Figure
8). The sphere collisions represent the specific
intersections between nodes on the pair of colliding
objects. This is the data that is required by the collision
response mechanism.

The world class carries out collision detection after
every update of the simulation scene, generating the
collision list of intersections at various levels of detail.
Potential candidates for collision, in other words those
objects not eliminated by the broad phase, are placed in
a list of collisions for further processing. Starting at the
root nodes we traverse the sphere trees of the objects
checking for intersection. When an intersection is found,
the contact variables are calculated and an entry is stored
in the sphere collision list of the respective collision
object. Whenever we finish processing a complete level
of a sphere tree, we have the required data to refine the
resulting response by one level of accuracy.

After solving the equations of section 4.1 to
determine the impulse that needs to be applied at each
intersecting node, a final change of state for each object
is determined by resolving multiple impulses to
determine their net effect on the object. Two things are
worth noting here:

(i) the process of calculating a single impulse always
involves a constant amount of processing time.

(ii) the time spent on collision response is directly
dependent on the number of intersections being
processed.

The number of intersecting nodes is likely to be different
for each collision and for each level of detail so
processing time for impulse resolution varies for
different collisions. However it is at the contact-
modelling phase that we decide on the number of nodes
that will be processed so, given the amount of
processing time for a single impulse computation, it is
possible to forecast the amount of time that will be spent
on the process of calculating collision response. A

scheduling mechanism can then make use of this
information to fulfil the requirements of a time critical
system.

The time-critical scheduler for the full application
monitors the time spent in generating each frame of the
animation. Taking into account the time required for
other processes, such as rendering, it needs to decide
how much time will be made available for the combined
processes of collision detection, contact modelling and
collision response. The scheduler initially allocates a
time quota at each frame for all collision handling
processes and decides on the order of collision
processing. At each stage in the collision
handling/contact modelling phase it not only checks if
the quota has been exceeded but also reserves the time
that will later be spent on the response computations.
When it has determined that the detection process has
exhausted its allocated time quota, it interrupts the
collision detection process and passes control to the
collision response mechanism. The response mechanism
in turn updates the scene based on the most accurate
level of detail available (in other words the most
recently completed sphere collision lists for each
collision).

5.2. Results

Figures 9(a) – (c) show sequences of frames from an
animation of a single collision interrupted at three levels
of sphere tree detail. We look at the two dimensional
projection of a very simple collision case for ease of
visualization. The first two frames in each strip show,
respectively, the starting positions of the two objects and
the instant in which an intersection between sphere
nodes is detected. After the collision has been processed
the three different animation levels of detail show
increasing accuracy as can be seen from the trajectories
and the rotational velocities of the two objects.

This approach allows us to manage collision
handling in massively populated scenes. The only
requirement is that we have time to do collision
detection and response at the coarsest level of detail for
all objects in the scene.

6. Conclusion and Comments

In this paper we introduced an approach to what we call
level of detail collision handling, and described an
application which implemented this idea. Previous
approaches have dealt with refinable detection but have
failed to describe how imprecise data returned by a
coarse level process might be used in anything but the
simplest response. We go one step further in this
particular direction and propose a method in which we
actually use the approximate data returned by an
interruptible collision detection to achieve useful results

Figure 8: The collision data structures

 Collision

integer
 object1_index,
 object2_index
spherecollision_list

Sphere_collision

 Vector
Normal
Position

Dingliana and O’Sullivan / Graceful Degradation of Collision Handling

© The Eurographics Association and Blackwell Publishers 2000.

for interactive animation. By controlling the level of
detail of individual interactions in a complex scene, it
becomes possible to reduce computational workload and
meet the demand for real-time frame rates. The harmful
impacts of simplification on the believability of the
animation can be reduced by careful management of
levels of detail.

Evaluating the effectiveness of our new collision
response methods is a difficult task. Hubbard9,10 showed
that, using interruption, almost constant-time collision
detection was possible. In previous work15, a metric was
presented for evaluating the geometric and perceived
collision inaccuracy present in a frame of an animation
where interruptible collision detection was used. This
metric was based on a set of psychophysical
experiments which determined subjects’ sensitivity to
inappropriate collisions, such as objects repulsing each
other at a distance. It was shown that using a scheduling
mechanism based on perceptual heuristics, perceived
inaccuracy, as measured by this metric, was significantly
reduced. However, the effect of unrealistic response on
this reaction was not considered. A fully comprehensive
evaluation of our techniques would also involve such
experiments, which deserve a study in their own right,
and will reveal insights into how the full process of
collision handling should be prioritised by the scheduler.

References

1. Baraff D. – Non-penetrating Rigid Body Simulation.
Eurographics ’93 State of the Art Reports. 1993

2. Baraff D. and Witkin A. - Physically Based
Modelling. Siggraph ’98 Course Notes (1998)

3. Barzel R., Hughes J.F. and Wood D.N. -Plausible
Simulation for Computer Graphics. Animation and
Simulation ’96. pp. 183-197. (1996)

4. Carlson D.A. and Hodgins J.K. – Simulation Levels
of Detail for Real-Time Animation. Proc. of
Graphics Interface ’97. pp. 1-8. (1997)

5. Chenny S. – Culling Dynamical Systems in Virtual
Environments. Proc. 1997 Symposium on
Interactive Graphics (1997)

6. Chenny S. and Forsyth D. – View Dependant
Culling of Dynamic Systems in Virtual
Environments. Proc. 1997 Symposium on
Interactive 3D Graphics. (1997)

7. Funkhouser T.A. and Sequin C.H. - Adaptive
Display Algorithm for Interactive Frame Rates
During Visualization of complex Environments.
SIGGRAPH ’93. pp. 247-254. (1993)

8. Gottschalk S, Lin M.C. and Manocha D – OBBTree:
A Hierarchical Structure for Rapid Interference
Detection. SIGGRAPH ’96. (1996)

9. Hubbard P.M. - Collision Detection for Interactive
Graphics Applications. IEEE Transactions on
Visualization and Computer Graphics. 1(3) pp. 218-
230. (1995)

10. Hubbard P.M. – Approximating Polyhedra with
Spheres for Time-Critical Collision Detection. ACM
Transactions on Graphics, 15(3) pp. 179-210 (1996)

11. Mirtich B. – Impulse Based Dynamic Simulation of
Rigid Body Systems. PhD Thesis, University of
California, Berkeley, 1996.

12. Mirtich B. – V-CLIP: Fast and Robust Polyhedral
Collision Detection. ACM Transactions on
Computer Graphics 1998.

13. Mirtich B., and Canny J. – Impulse Based Dynamic
Simulation. Proc. 1995 symposium on Interactive
3D Graphics. 181-188 (1995)

14. Moore M. and Wilhelms J. – Collision Detection
and Response for Computer Animation. Computer
Graphics Vol 22(4). pp. 289 – 297. (1988)

15. O’Sullivan C.A., Radach R. and Collins S. – A
Model of Collision Perception for Real-Time
Animation. Computer Animation and Simulation
’99. pp. 67-76 (1999)

16. Palmer I.J. Grimsdale R.L. - Collision Detection for
Animation using Sphere-Trees. Computer Graphics
Forum, 14(2) pp. 105-116. (1995)

17. Reddy M. - Perceptually Modulated Level of Detail
for Virtual Environments PhD Thesis University of
Edinburgh. (1997)

Dingliana and O’Sullivan / Graceful Degradation of Collision Handling

© The Eurographics Association and Blackwell Publishers 2000.

(a) Level 1 Collisions (b) Level 2 Collisions (c) Level 3 Collisions
Figure 9: Animation strips: Shown above are selected frames from collision simulations interrupted at three different
levels of sphere-tree detail. Note the varying gap at “collision time” and the differences in the calculated final linear and
rotational velocities.

