
References
1. Hubbard, P. M. (1995). Real-time collision detection and time-critical comput-

ing. In Proceedings of the First ACM Workshop on Simulation and Interaction in
Virtual Environments, July 1995, 92-96. 

2. Chenny, S. & Forsyth, D. (1997). View-dependent culling of dynamic systems 
in virtual environments. In Proceedings 1997 Symposium on Interactive 3D
Graphics, 55-58. 

3. Dingliana, J. & O’Sullivan, C. (2000). Graceful degradation of collision handling
in physically based animation. In Computer Graphics Forum, 19 (3), 239-247. 

Figure 1. A sphere-tree-based collision-processing system. Shown are the full
sphere trees of two objects and the process halted at three different stages. Better
approximations of the collision points directly affect the computed response as seen
by the direction of the impulse vector in yellow. Red spheres are colliding nodes.

Figure 2. The screenshot shows a projected region on the screen around the user’s
fixation point, which is given a higher priority, and objects within the region are
processed at a higher level of detail.

156

Conference Abstracts and Applications
Sketches & Applications

Contact
John Dingliana

Trinity College Dublin
John.Dingliana@cs.tcd.ie

Carol O’Sullivan
Gareth Bradshaw

Trinity College Dublin

Collisions and Adaptive Levels of Detail

Collision detection, contact modeling, and collision response are
vital but inherently expensive features of a physically based anima-
tion system. As scene complexity increases, collision handling
quickly becomes a major bottleneck in the simulation process. A
trade-off between speed and accuracy is often required in order to
achieve interactive frame-rates1. Our goal in ReACT (Real-time
Adaptive Collision Toolkit) is to optimize this trade-off by making
simplifications as invisible as possible to the viewer. 

Many applications simply address the frame-rate problem 
through pre-emptive simplification, reducing the complexity of 
the simulation to a pre-determined “safe” level. However, when
complexity changes often over the course of a simulation, such an
approach suffers from one of two problems: over simplification of
the whole for the sake of relatively few snapshots of high complexi-
ty, or a drop in frame rate when the computational workload has
been underestimated. We can avoid this through adaptive 
and interactive simplification of the simulation as it evolves. A pop-
ular approach to reducing workload in interactive animation is
visibility-based culling, where parts of the scene not inside the visi-
ble volume are excluded from normal processing2. This is taken a
step further in ReACT by applying varying levels of simplification
over different regions within the viewable area. Such steps are an
improvement, but they do not implicitly guarantee target frame
rates if static rules are used to determine the levels of detail for dif-
ferent regions. If, for instance, the higher-priority regions should
ever encounter computationally complex situations themselves,
then problems similar to those in the pre-emptive simplification
approach arise.

Target frame rates can be guaranteed by using time-critical mecha-
nisms for computationally expensive parts of the simulation
process. A time-critical (or interruptible) mechanism is halted when
a scheduler decides that enough time has been spent on any partic-
ular task. For such an approach to work, however, we must ensure
that some result is obtained and that some degree of correctness is
maintained in the system, regardless of when processing is inter-
rupted. This is achieved by using incremental mechanisms, which
generate results of increasing accuracy as more time is spent on
processing3. One example of this is Hubbard’s sphere-tree collision
detection system, which is extended in ReACT to return increas-
ingly accurate approximations of contact data for collision response
calculations (see Figure 1). 

Although an interruptible system may guarantee target frame rates,
it does not in itself ensure that the trade-off between accuracy and
processing time is optimized. For this, we must incorporate some
form of prioritization within the process. Certain events or specific
parts of the scene are categorized as being more important and, as a
result, given more processing time. Prioritization of the scene is
based upon factors related to visibility and perceptibility of approxi-
mations within different parts of the scene. In ReACT, for instance,
priority can be based on a weighted combination of factors such as
eccentricity, occlusion, or projected distance from the user’s fixation
point determined interactively with the use of an eye-tracker
(Figure 2).


